when one is adding an inline entity for a relation of a single card,
the 'add a new xxx' link disappears. If the user then cancel the addition,
we have to make this link appears back. This is done by giving add new link
id to removeInlineForm.
.. -*- coding: utf-8 -*-
Let's learn RQL by practice...
.. contents::
Introduction
------------
RQL has a syntax and principle inspirated from the SQL query language, though
it's at a higher level in order to be more intuitive and suitable to easily make
advanced queries on a schema based database.
* the main idea in RQL is that we'are following relations between entities
* attributes are a special case of relations
* RQL has been inspirated from SQL but is at a higher level
* a knowledge of the application'schema is necessary to build rql queries
To use RQL, you'll have to know the basis of the language as well as a good
knowledge of the application'schema. You can always view it using the "schema"
link in user's dropdown menu (on the top-right of the screen) or by clicking here_.
.. _here: schema
Some bits of théory
-------------------
Variables et types
~~~~~~~~~~~~~~~~~~
Entities and attributes'value to follow and / or select are represented by the
query by *variables* which must be written upper-case.
Possible types for each variable are deducted from the schema according to
constraints in the query.
You can explicitly constrain a variable's type using the special relation "is".
Base types
~~~~~~~~~~
* `String` (literal: between double or simple quotes)
* `Int`, `Float` (using '.' as separator)
* `Date`, `Datetime`, `Time` (literal: string YYYY/MM/DD[ hh:mm] or
`TODAY` and `NOW` keywords)
* `Boolean` (keywords `TRUE` et `FALSE`)
* keyword `NULL`
Opérateurs
~~~~~~~~~~
* Logical operators : `AND`, `OR`, `,`
* Mathematical operators: `+`, `-`, `*`, `/`
* Comparisons operators: `=`, `<`, `<=`, `>=`, `>`, `~=`, `LIKE`, `IN`
* `=` is the default comparison operator
* `LIKE` / `~=` permits use of the special character `%` in a string to tell
the string must begin or end with a prefix or suffix (as SQL LIKE operator) ::
Any X WHERE X name ~= 'Th%'
Any X WHERE X name LIKE '%lt'
* `IN` permits to give a list of possible values ::
Any X WHERE X name IN ('chauvat', 'fayolle', 'di mascio', 'thenault')
Grammaire des requêtes de recherche
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
[DISTINCT] <entity type> V1(, V2)*
[GROUPBY V1(, V2)*] [ORDERBY <orderterms>]
[WHERE <restriction>]
[LIMIT <value>] [OFFSET <value>]
:entity type:
Type of the selected variable(s). You'll usually use `Any` type to not specify
any type.
:restriction:
List of relations to follow, in the form
`V1 relation V2|<constant value>`
:orderterms:
Define a selection order : variable or column number, followed by the sort method
(`ASC`, `DESC`), with ASC as default when not specified
notice about grouped query (e.g using a `GROUPBY` clause): every selected
variable should be either grouped or used in an aggregat function.
Example schema
--------------
In this document, we will suppose the application's schema is the one described
here. Available entity types are :
:Person:
::
name (String, required)
birthday (Date)
:Company:
::
name (String)
:Note:
::
diem (Date)
type (String)
And relations between those entities: ::
Person works_for Company
Person evaluated_by Note
Company evaluated_by Note
Meta-data
~~~~~~~~~
Every entities'type have the following meta-data:
* `eid (Int)`, a unique identifier
* `creation_date (Datetime)`, date on which the entity has been created
* `modification_date (Datetime)`, lastest date on which the entity has been modified
* `created_by (CWUser)`, relation to the user which has created this entity
* `owned_by (CWUser)`, relation to the user()s considered as owner of this
entity, the entity's creator by default
* `is (Eetype)`, special relation to specify a variable type.
A user's entity has the following schema:
:CWUser:
::
login (String) not null
password (Password)
firstname (String)
surname (String)
Basis queries
-------------
0. *Every persons* ::
Person X
or ::
Any X WHERE X is Person
1. *The company named Logilab* ::
Company S WHERE S name 'Logilab'
2. *Every entities with a "name" attribute whose value starts with 'Log'* ::
Any S WHERE S name LIKE 'Log%'
or ::
Any S WHERE S name ~= 'Log%'
This query may return Person or Company entities.
3. *Every persons working for the Logilab company* ::
Person P WHERE P works_for S, S name "Logilab"
or ::
Person P WHERE P works_for S AND S name "Logilab"
4. *Company named Caesium ou Logilab* ::
Company S WHERE S name IN ('Logilab','Caesium')
or ::
Company S WHERE S name 'Logilab' OR S name 'Caesium'
5. *Every company but ones named Caesium ou Logilab* ::
Company S WHERE NOT S name IN ('Logilab','Caesium')
or ::
Company S WHERE NOT S name 'Logilab' AND NOT S name 'Caesium'
6. *Entities evaluated by the note with eid 43* ::
Any X WHERE X evaluated_by N, N eid 43
7. *Every persons order by birthday from the youngest to the oldest* ::
Person X ORDERBY D DESC WHERE X birthday D
Notice you've to define a variable using the birthday relation to use it in the
sort term.
8. *Number of persons working for each known company* ::
Any S, COUNT(X) GROUPBY S WHERE X works_for S
Notice you've that since you're writing a grouped query on S, X have to be
either grouped as well or used in an aggregat function (as in this example).
Advanced
--------
0. *Person with no name specified (i.e NULL)* ::
Person P WHERE P name NULL
1. *Person which are not working for any company* ::
Person P WHERE NOT p works_for S
2. *Every company where person named toto isn't working* ::
Company S WHERE NOT P works_for S , P name 'toto'
3. *Every entity which have been modified between today and yesterday* ::
Any X WHERE X modification_date <= TODAY, X modification_date >= TODAY - 1
4. *Every note without type, to be done in the next 7 days, ordered by date* ::
Any N, D where N is Note, N type NULL, N diem D, N diem >= TODAY,
N diem < today + 7 ORDERBY D
5. *Person with an homonym (without duplicate)* ::
DISTINCT Person X,Y where X name NX, Y name NX
or even better (e.g. without both (Xeid, Yeid) and (Yeid, Xeid) in the results) ::
Person X,Y where X name NX, Y name NX, X eid XE, Y eid > XE