when reading the schema while adding/removing cubes, read schema in non-strict mode
.. -*- coding: utf-8 -*-
Data as objects
===============
We will in this chapter introduce the objects that are used to handle
the data stored in the database.
Classes `Entity` and `AnyEntity`
--------------------------------
To provide a specific behavior for each entity, we just need to define
a class inheriting from `cubicweb.entities.AnyEntity`. In general, we have
to defined those classes in a module of `entities` package of an application
so that it will be available on both server and client side.
The class `AnyEntity` is loaded dynamically from the class `Entity`
(`cubciweb.common.entity`). We define a sub-class to add methods or to
specialize the handling of a given entity type
Descriptors are added when classes are registered in order to initialize the class
according to its schema:
* we can access the defined attributes in the schema thanks the attributes of
the same name on instances (typed value)
* we can access the defined relations in the schema thanks to the relations of
the same name on instances (entities instances list)
The methods defined for `AnyEntity` or `Entity` are the following ones:
* `has_eid()`, returns true is the entity has an definitive eid (e.g. not in the
creation process)
* `check_perm(action)`, checks if the user has the permission to execcute the
requested action on the entity
:Formatting and output generation:
* `view(vid, **kwargs)`, apply the given view to the entity
* `absolute_url(**kwargs)`, returns an absolute URL to access the primary view
of an entity
* `rest_path()`, returns a relative REST URL to get the entity
* `format(attr)`, returns the format (MIME type) of the field given un parameter
* `printable_value(attr, value=_marker, attrtype=None, format='text/html')`,
returns a string enabling the display of an attribute value in a given format
(the value is automatically recovered if necessary)
* `display_name(form='')`, returns a string to display the entity type by
specifying the preferred form (`plural` for a plural form)
:Data handling:
* `as_rset()`, converts the entity into an equivalent result set simulating the
request `Any X WHERE X eid _eid_`
* `complete(skip_bytes=True)`, executes a request that recovers in one time
all the missing attributes of an entity
* `get_value(name)`, returns the value associated to the attribute name given
in parameter
* `related(rtype, x='subject', limit=None, entities=False)`, returns a list
of entities related to the current entity by the relation given in parameter
* `unrelated(rtype, targettype, x='subject', limit=None)`, returns a result set
corresponding to the entities not related to the current entity by the
relation given in parameter and satisfying its constraints
* `set_attributes(**kwargs)`, updates the attributes list with the corresponding
values given named parameters
* `copy_relations(ceid)`, copies the relations of the entities having the eid
given in the parameters on the current entity
* `last_modified(view)`, returns the date the object has been modified
(used by HTTP cache handling)
* `delete()` allows to delete the entity
:Standard meta-data (Dublin Core):
* `dc_title()`, returns a unicode string corresponding to the meta-data
`Title` (used by default the first attribute non-meta of the entity
schema)
* `dc_long_title()`, same as dc_title but can return a more
detailled title
* `dc_description(format='text/plain')`, returns a unicode string
corresponding to the meta-data `Description` (look for a description
attribute by default)
* `dc_authors()`, returns a unicode string corresponding to the meta-data
`Authors` (owners by default)
* `dc_date(date_format=None)`, returns a unicode string corresponding to
the meta-data `Date` (update date by default)
:Vocabulary control on relations:
* `vocabulary(rtype, x='subject', limit=None)`, called by the
editing views, it returns a list of couples (label, eid) of entities
that could be related to the entity by the relation `rtype`
* `subject_relation_vocabulary(rtype, limit=None)`, called internally
by `vocabulary` in the case of a subject relation
* `object_relation_vocabulary(rtype, limit=None)`, called internally
by `vocabulary` in the case of an object relation
* `relation_vocabulary(rtype, targettype, x, limit=None)`, called
internally by `subject_relation_vocabulary` and `object_relation_vocabulary`
*rtags*
-------
*rtags* allows to specify certain behaviors of relations relative to a given
entity type (see later). They are defined on the entity class by the attribute
`rtags` which is a dictionnary with as its keys the triplet ::
<relation type>, <target entity type>, <context position ("subject" ou "object")>
and as the values a `set` or a tuple of markers defining the properties that
apply to this relation.
It is possible to simplify this dictionnary:
* if we want to specifiy a single marker, it is not necessary to
use a tuple as the value, the marker by itself (characters string)
is enough
* if we only care about a single type of relation and not about the target
and the context position (or when this one is not ambigous), we can simply
use the name of the relation type as the key
* if we want a marker to apply independently from the target entity type,
we have to use the string `*` as the target entity type
Please note that this dictionnary is *treated at the time the class is created*.
It is automatically merged with the parent class(es) (no need to copy the
dictionnary from the parent class to modify it). Also, modify it after the
class is created will not have any effect...
.. include:: B0031-define-entities.en.txt